grinding mill for iron ore

2012/7/11 | 投稿者: crushermiracle

Banded iron grinding mill for iron ore formations are sedimentary rocks containing >15% iron composed predominantly of thinly bedded iron minerals and silica (as quartz). BIFs occur exclusively in Precambrian rocks, and are commonly weakly to intensely metamorphosed. BIFs may contain iron in carbonates (siderite or ankerite) or silicates (minnesotaite, greenalite, or grunerite), but in those mined as iron ores, oxides (magnetite or hematite) are the principal iron mineral.[3] Banded Iron formations are known as taconite within North America. Mining of BIF formations involves coarse crushing and screening, followed by rough crushing and fine grinding to comminute the ore to the point where the crystallised magnetite and quartz are fine enough that the quartz is left behind when the resultant powder is passed under a magnetic separator.
The mining involves moving tremendous amounts of ore and waste. The waste comes in two forms, bedrock in the mine (mullock) that isn't ore, and unwanted minerals which are an intrinsic part of the ore rock itself (gangue). The mullock is mined and piled in waste dumps, and the gangue is separated during the beneficiation process and is removed as tailings. Taconite tailings are mostly the mineral quartz, which is chemically inert. This material is stored in large, regulated water settling ponds.
The key economic parameters for magnetite ore being economic are the crystallinity of the magnetite, the grade of the iron within the BIF host rock, and the contaminant elements which exist within the magnetite concentrate. The size and strip ratio of most magnetite resources is irrelevant as BIF formations can be hundreds of metres thick, with hundreds of kilometers of strike, and can easily come to more than 3,000 million or more, tonnes of contained ore.
The typical grade of iron ball mill for iron ore at which a magnetite-bearing banded iron formation becomes economic is roughly 25% Fe, which can generally yield a 33% to 40% recovery of magnetite by weight, to produce a concentrate grading in excess of 64% Fe by weight. The typical magnetite iron ore concentrate has less than 0.1% phosphorus, 3–7% silica and less than 3% aluminium.
The grain size of the magnetite and its degree of commingling with the silica groundmass determine the grind size to which the rock must be comminuted to enable efficient magnetic separation to provide a high purity magnetite concentrate. This determines the energy inputs required to run a milling operation. Generally most magnetite BIF deposits must be ground to between 32 and 45 micrometres in order to produce a low-silica magnetite concentrate. Magnetite concentrate grades are generally in excess of 63% Fe by weight and usually are low phosphorus, low aluminium, low titanium and low silica and demand a premium price.
Currently magnetite iron ore ultrafine mill for iron ore (taconite) is mined in Minnesota and Michigan in the U.S., and Eastern Canada. Magnetite bearing BIF is currently mined extensively in Brazil, which exports significant quantities to Asia, and there is a nascent and large magnetite iron ore industry in Australia.
Occasionally granite and ultrapotassic igneous rocks segregate magnetite crystals and form masses of magnetite suitable for economic concentration. A few iron ore deposits, notably in Chile, are formed from volcanic flows containing significant accumulations of magnetite phenocrysts. Chilean magnetite iron ore deposits within the Atacama Desert have also formed alluvial accumulations of magnetite in streams leading from these volcanic formations.
Some magnetite skarn and hydrothermal deposits have been worked in the past as high-grade iron ore deposits requiring little beneficiation. There are several granite-associated deposits of this nature in Malaysia and Indonesia.
Other sources of magnetite iron ore include metamorphic accumulations of massive magnetite ore such as at Savage River, Tasmania, formed by shearing of ophiolite ultramafics.
Another, minor, source of iron ores vertical grinding mill for iron ore are magmatic accumulations in layered intrusions which contain a typically titanium-bearing magnetite often with vanadium. These ores form a niche market, with specialty smelters used to recover the iron, titanium and vanadium. These ores are beneficiated essentially similar to banded iron formation ores, but usually are more easily upgraded via crushing and screening. The typical titanomagnetite concentrate grades 57% Fe, 12% Ti and 0.5% V2O5.